Cancer prevention mediated by caffeic acid phenethyl ester involves cyp2b1/2 modulation in hepatocarcinogenesis.
نویسندگان
چکیده
Studies of cancer chemoprevention with caffeic acid phenethyl ester (CAPE) in the resistant hepatocyte model of hepatocarcinogenesis have shown the participation of CYP drug metabolizing enzymes. To prevent neoplastic and preneoplasic lesions, we must specifically identify which CYP activities are modified in the mechanism of action of CAPE. Male Fischer-344 rats were pretreated with CAPE twelve hours before administration of diethylnitrosamine (DEN) and were sacrificed twelve hours after CAPE and twelve hours, twenty-four hours, twenty-four days, and twelve months after DEN. Other rats were treated with the CYP inhibitors α-naphthoflavone or SKF525A and sacrificed twenty-four hours and twenty-four days after DEN. Microsomes were obtained from livers to quantify protein using Western blot. Diethylnitrosamine metabolism was measured based on nitrite formation and liver histology using GGT histochemistry. Caffeic acid phenethyl ester diminished the protein levels of CYP1A2 and CYP2B1/2. The inhibition of CYP2B1/2 prevented the appearance of preneoplastic lesions. Microsomal assays demonstrated that CAPE interfered with DEN activation diminishing nitrites similar to SKF525A and probably mediated by CYP2B1/2 inhibition. A single dose of CAPE before DEN treatment reduced the appearance of tumors by 43%. These results confirmed that CAPE is a promising agent to confer chemoprotection in liver cancer and should be considered for human therapies.
منابع مشابه
Evidence that the anticarcinogenic effect of caffeic acid phenethyl ester in the resistant hepatocyte model involves modifications of cytochrome P450.
Caffeic acid phenethyl ester (CAPE), a natural component of propolis, shows anticarcinogenic properties in the modified resistant hepatocyte model when administered before initiation or promotion of hepatocarcinogenesis process; however, information about the mechanism underlying this chemoprotection is limited. The aim of this work was to characterize the effect of CAPE on cytochrome P450 (CYP...
متن کاملChemoprotective effect of caffeic acid phenethyl ester on promotion in a medium-term rat hepatocarcinogenesis assay.
Caffeic acid phenethyl ester (CAPE), a natural honeybee product exhibits a spectrum of biological activities including anti-microbial, anti-inflammatory, antioxidant and anti-tumoral actions. CAPE is also chemopreventive against intestinal, colon and skin cancer. Our aim was to extend the study of its chemoprotective features to the promotion of hepatocarcinogenesis. Male Wistar rats were subje...
متن کاملProtective Effect of Caffeic Acid Phenethyl Ester (CAPE) on Amiodarone-Induced Pulmonary Fibrosis in Rat
Treatment with amiodarone, a commonly prescribed antidysrhythmic agent, is associated with pulmonary fibrosis (PF) which is a commonly progressive and untreatable dieases. Caffeic acid phenethyl ester (CAPE) is a phenolic antioxidant and an active anti-inflammatory, anticancer, antimicrobial and antioxidant component of propolis (bee glue; a resinous hive product collected by honey bees). In th...
متن کاملProtective Effect of Caffeic Acid Phenethyl Ester (CAPE) on Amiodarone-Induced Pulmonary Fibrosis in Rat
Treatment with amiodarone, a commonly prescribed antidysrhythmic agent, is associated with pulmonary fibrosis (PF) which is a commonly progressive and untreatable dieases. Caffeic acid phenethyl ester (CAPE) is a phenolic antioxidant and an active anti-inflammatory, anticancer, antimicrobial and antioxidant component of propolis (bee glue; a resinous hive product collected by honey bees). In th...
متن کاملCaffeic acid phenethyl ester suppresses the proliferation of human prostate cancer cells through inhibition of p70S6K and Akt signaling networks.
Caffeic acid phenethyl ester (CAPE) is a bioactive component derived from honeybee hive propolis. CAPE has been shown to have antimitogenic, anticarcinogenic, and other beneficial medicinal properties. Many of its effects have been shown to be mediated through its inhibition of NF-κB signaling pathways. We took a systematic approach to uncover the effects of CAPE from hours to days on the signa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Toxicologic pathology
دوره 40 3 شماره
صفحات -
تاریخ انتشار 2012